Creating Interactive Agents in an Immersive Environment
Alex Rasla, Avani Tanna, Jiarui Zhu

High Level Vision and Idea

Alex Rasla, Avani Tanna, Jiarui Zhu

Grand Vision

Interactive Immersive Learning
Environment in VR

High quality
speech to text Text to speech
converter for converter for the
player/ sgeech NPCs to reply
recongition

NLP tools to
Agentsticharacters with generate natural
intelligence conversations with
low latency

Sophisiticated
scenes people are
happy to interactive
with

Deployment to
Oculus

Scenes with a
background e.g.
restaurant/bar

Good looking
character

Add background Add Openal GPT-3/ Mac deployment/
stroeis to personalities/behavior %e‘ ‘alogFlow Oculus Voice SDK Oculus Voice SDK Google TTS ? Windows with
characters to the characters o9 Oculus link

A minimal
character that can A functional text
resonably respond conversational
to input of any agent
format

A minimal

A minimal scene i e

Create an Interactive Agent that
People can Converse with

Introduction

Based on personal experiences with learning new languages and the process of
learning in general — be it through language apps or taking classes — we realize how
discouraging, nerve-racking, difficult, and error-prone it can be for foreigners to speak
freely in another language. To help users better speak a language without the pressure
and anxiety to be perfect, and enhance the experience of learning a language through
VR immersive settings (e.g., simulating a ‘teacher’ on the other side), our grand vision
focused on approaches in VR that can help enhance a user’s overall language learning
experience. As a stepping stone to this goal, this project was an attempt to build an
immersive learning environment in order to demonstrate and encourage social
experiences with the help of the technology in a manner that does not let the user
become entirely dependent on the technology. In order to do so, we propose to build

interactive agents in an immersive setting with which we can converse with on the
Oculus Quest 2.

Challenges

Some of the challenges with this included integrating a natural language processing
(NLP) model in order for the agent to be able to respond, using a speech recognition
platform so the user can interact with the agent, and ensuring the agent moves and
behaves in a realistic way. While it may seem these challenges have already been
incorporated into gaming and virtual environments, the combination of all these aspects
together in real time is very difficult.

The most important part of our project was to ensure our interatable agent responds in
non-trivial or pre-programmed ways. The best and most efficient way to do this was to
use OpenAl’'s GPT-3 model, which has proven to be able to carry very realistic
conversations. However, in order to use this model, we needed to be able to incorporate
it into Unity and deploy it on the Quest 2. Through our preliminary exploration earlier in
the quarter, we found a third party library that uses GPT-3 with Unity and were able to
deploy it on the Quest 2.

Another important challenge to overcome was our speech to text integration. While this
isn’t as important as integrating an NLP model into our application, it was an important
piece of our immersive environment. In order to do so, we used the VoiceSDK feature in
the Oculus Integration package in Unity. The SDK had a minor latency problem, but we
combatted this with a “thinking” animation from the interactive character.

Technoloqy Explorations

We decided to first tackle the main challenges of the project, i.e. to create an interactive
agent in VR using the Oculus Quest 2 and then use NLP based techniques to
implement English models such that the user is able to communicate with the agent. We
ran into significant challenges when installing, deploying, and modifying existing
packages for our NLP and Speech to Text processing, but managed to successfully
incorporate each aspect into our project.

OpenAl

Although GPT-3 has been available for use for a few months, there is no official OpenAl
Unity library. Nevertheless, Unity developers have tried integrating GPT-3 since it came
out by creating their own packages and APIls. We explored two APIs, both of which

contained similar input/output sample scenes. Thankfully, we were able to run both the
API’s using the sample scenes provided by the packages. In this package the scene
simply printed GPT-3’s response in the Unity console as shown below:

Q [11:18:10] Hey, my name is Alex

UnityEngine.Debug:Log (object) !

[11:18:14] and I've been in this business for over 15 years. I've been a professional model, I've been a professional photographer and I've worked in video production. I've had more behind the =~e|
UnityEngine.Debug:Log (object) 1

In this package’s sample scenes, the user can write text in a text box and click on
‘Attempt Completion’. This prompts OpenAl to complete the text or respond back within
the relevant context. Here is a snapshot of the working example:

Integrating OpenAl/GPT3 was very integral to our final project. This exploration paved
the way for us to further explore GPT-3 and related functionalities for our project. Since
our project revolves around being able to create an interactable agent that can carry a
conversation, we needed a way for the interatable agent to be able to give non-trivial or
pre-programmed responses. The best and most efficient way to do this was to use
OpenAl’'s GPT-3 model, which gave us NLP based functionalities such as text
completion that are required for generating text/conversations with agents in our project.

ML Agents

The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source project that
enables games and simulations to serve as environments for training intelligent agents.
This technology would have provided us with intelligent agents that can be trained for
VR/AR projects, reinforcement learning, or other ML based models. However, the toolkit
was fairly challenging to install and train on the Quest 2, and used too much processing
power so we decided not to include it in our final project. Below are some screenshots
of this exploration, showing that we successfully installed and integrated ml-agents in
Unity. Given more time, we would have liked to further explore interactive, intelligent
agents and their functionalities and use it for our grand vision.

https://github.com/ivomarel/OpenAI_Unity
https://github.com/hexthedev/OpenAi-Api-Unity/releases/tag/v0.2.1

Below are a few resources that helped us with the exploration, and some screenshots of
the agents in Unity:
e Make a more engaging game w/ ML-Agents | Machine learning bots for game
development | Reinforcement learning | Unit
e Unity ML-Agents Setup — Immersive Limit

Oculus VoiceSDK

To explore the immersive aspect of our project, we decided to see if it was possible to
do speech to text (STT) with the Quest 2. After exploring what other developers have
achieved with STT and the Quest 2, we were underwhelmed by what had been done.
Most attempts tried to use previously working Android STT methods and deploy it on
the Oculus, but this obviously was extremely buggy and carried many issues alongside
it (for those that succeeded). However, the Oculus Integration package in Unity recently
released a VoiceSDK. This SDK is supposed to be used to integrate custom voice
commands into Oculus devices. Some of the features include: automatic speech
recognition to process voice requests into text, NLP for processing text into user intents,
built-in activation methods, personalize voice requests baked on the user and app state
using dynamic entities, real-time transcription in 13 languages.

It was released in November 2021, so there were not a lot of available resources and
tutorials that we could utilize. However, as a proof of concept, we installed one of their
given sample scenes onto Quest 2 which, after some debugging, was able to
consistently recognize and translate speech to text. For this exploration, we ran one app

https://unity.com/products/machine-learning-agents
https://unity.com/products/machine-learning-agents
https://www.immersivelimit.com/tutorials/unity-ml-agents-setup

that utilizes the Voice SDK to change the color of the shapes with voice input, and one
that starts and stops a timer.

Ideally, for an interactive immersive learning environment for a foreign language, we
would like the user to have conversations with the characters in the VR. Simply using a
text box in VR does not give the user the feeling of realism. Thus, we found it necessary
to be able to have the player use their voice to interact with an agent, and have it
translated into text for GPT-3 to process.

. l Activate

I hveard: Hello ny name & Alex

Activate
Make the capsule red.

Here is some related work:
e QOculus Voice SDK
e Speech as Input in Virtual Reality

e OpenAl Unity Integration

MVP Design

The most important part of our project was to ensure our interactable agent responds in
non-trivial or pre-programmed ways. The best and most efficient way to do this is to use
NLP APIs such as OpenAl or DialogFlow, which have proven to be able to carry very
realistic conversations. In order to use these models, we need to be able to incorporate
them into Unity and deploy it on Quest 2. Throughout this process, we had to learn the
libraries’ scripts/code bases and how to use them for our specific use case. Normally,
this wouldn’t be a difficult task, but because they were third party libraries, the
documentation was poor and they were not made for native deployment on the Quest 2.

DialogFlow

One of the directions for our MVP was to explore the use of DialogFlow (continuation of
Api.ai) with Unity. Based on a research project published in AAMAS 2021, we tried to
implement a conversational Al in Unity. We replicated their implementation of the
DialogFlow API, overcame several installation related and implementation based

https://developer.oculus.com/documentation/unity/voice-sdk-overview/
https://towardsdatascience.com/speech-as-input-in-virtual-reality-bb892f9bb41
https://github.com/ivomarel/OpenAI_Unity
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1779.pdf

challenges with Apache ActiveMQ (message broker/client that allows for messages to
be sent back and forth between the user and the agent), and successfully created an
MVP with a functional text conversation with the agent. Here is a video of a
demonstration of this MVP.

OpenAl

In another iteration of our MVP, we used an OpenAl Unity wrapper mentioned in our
technology explorations to create an agent with GPT-3. Using this library, we were able
to create a character with a given personality or behavior. As a result, the character was
able to give responses in accordance with their specific personality. This makes not only
every conversation with a specific character unique, but also will allow us to develop
and converse with different types of characters within a scene. For this MVP, we were
also able to incorporate speech recognition with the Oculus Voice SDK so our
conversations with the interactable agent do not require entering text. Here is a link to a
video of this MVP.

Once we got these technologies to work, we faced design choices for our final project
between two interesting state of the art options. Ultimately, since OpenAl provided us
with more flexibility with regards to incorporating speech recognition, compatibility with
Oculus and Unity (as per our explorations - this is not the ground truth), and avoided a
client-server approach as in DialogFlow, we decided to work with OpenAl. To build upon
our initial OpenAl MVP, we further explored behavior scripts of the agents and created
different characters with different behaviors/personalities. We also discovered that ML
agents required a lot of training for our project, so we decided to build up on some of the
previous work done in this area, such as in this project.

Final Project

Behaviors

We implemented three different behaviors using asset scripts in Unity that can help the
character obtain a sort of a personality based on a behavior description. Below are the
screenshots of examples of a combination of assets that we use, for instance, angry
and inquisitive, happy and helpful, and sad and depressed. Each of the three characters
in our project have a unique kind of behavior. This was a trial and error procedure where
we played around with natural language input until we could successfully generate
examples with significantly different behaviors. We continued to modify the behavior
descriptions until we felt that the conversations represented their respective
personalities descriptions.

https://youtu.be/Bxqmjey_9gc
https://github.com/ivomarel/OpenAI_Unity
https://developer.oculus.com/documentation/unity/voice-sdk-overview/
https://youtu.be/vCEEeq39qCg
https://github.com/ivomarel/OpenAI_Unity

However, it should be noted that OpenAl text generation relies on many, many other
factors and may not just be controlled with behavior scripts. These behavior
descriptions helped us nudge the conversations and character reactions in the right
direction, but still depended heavily on the flow of the text generation and the
conversation. To this end, we observe that the behavioral differences are not perfect
and may require a few trials for better user experience.

Ipful. [Subject] cares about he u feel. [Subject] is very

Below are some results from different behavioral conversations with Al agents. You can
see how different the conversations are:

e Angry and Inquisitive

e Happy and Helpful
e Sad and Depressed

User Experience

Once we were able to successfully create these behaviors, we built more immersive
environments in Unity, and a menu that allows the user to select the type of character
using a left and right toggle button. The female is the happy and helpful character, the
male with the hair is the angry and inquisitive character, and the male without the hair is

https://youtu.be/Zu0Z_gUZ6Ic
https://youtu.be/UmD9b3VXiIA
https://youtu.be/luf0f_Rec7A

the sad and depressed character. Once a character is selected, the user can click on
the confirm button to talk to the agent in a unique, immersive scene. We chose a beach
scene for the happy and helpful female, a city scene for the angry and inquisitive male,
and a forest scene for the sad and depressed male.

Here is the video of the intermediary version of our app (with menu and three
characters, without scenes).

Quest 2 Deployment

To deploy the application to the Oculus:
1. Add all the scenes to the Scenes In Build in Build Settings
2. Make sure the internet requirement is set to always in player settings
3. Connect the oculus with the mac and allow mac to access the data
4. In Build Settings, choose Android. In Run Device, choose the Oculus that is
connected
Click Build And Run
6. Once the application is deployed to oculus, allow GPT-3 in oculus and allow
audio recording
7. Make sure the Oculus is connected to internet and the mic is on

o

To run the applications on Oculus:
1. In the menu scene, you can press the trigger to choose left or right button to
select different characters (each character will bring you to a unique scene)
2. Press the trigger to confirm your selection
3. Once you’re brought to the scene, to begin a conversation with the agent, simply
press the trigger on the Quest 2 controller

Below are the example snapshots of our character selection and scenes.

Confirm

https://youtu.be/5UHjIQZNPSE

& My name is Jagk, but a8
' BoliaeSadFckE ©

T

[g —

Evaluation/Results

Results:
e Links to the recorded video within Oculus with team members:
o Alex
o Avani
o Jack

e Links to the recorded video in Unity to show the different behaviors of our agents:
o Angry and Inquisitive
o Happy and Helpful
o Sad and Depressed

e Example screenshots of our scenes above

We successfully built three different characters with different behaviors and scenes in
Unity, allowing the user to select the agent they want to converse with. In order to see
how different the outputs were and to record how different the conversations for each of
the users were, all three team members recorded videos. Here are the links to the
videos showing the different conversations with the agents: Alex, Avani, and Jack. In
each of the recorded videos, each team member chose one character and had a
conversation to show the unique preset behavior of the character. In general, we think
those behaviors match our expectations. We also have other videos recorded in Unity to
show the distinct behaviors of our characters. We notice that even if we have pre-set
the behaviors of characters, those behaviors are not super stable in the trials and highly
depend on the flow of the conversations.

With the technology at hand, we think that the conversations are quite believable and
form a good basis for future work towards our bigger goal of creating a language
experience. It is difficult to say if we would be able to simulate “language teachers” and
build agents that can perfect languages but we can surely see potential in terms of
creating immersive environments for language learning such that a user can open up
and converse freely with an agent. We believe that training and fine-tuning the language
models can further make it better. Our work on the project definitely got us closer to the

https://youtu.be/-t6Krp1_1Eg
https://youtu.be/RGchlc1N00c
https://drive.google.com/file/d/1Xt9AO1MSBmqtIg6Z1CElBVTOTirM5e18/view?usp=sharing
https://youtu.be/Zu0Z_gUZ6Ic
https://youtu.be/UmD9b3VXiIA
https://youtu.be/luf0f_Rec7A
https://youtu.be/-t6Krp1_1Eg
https://youtu.be/RGchlc1N00c
https://drive.google.com/file/d/1Xt9AO1MSBmqtIg6Z1CElBVTOTirM5e18/view?usp=sharing

overall goal although it needs more future work and user studies. We think this project
also contributes to the interactive conversations in AR/VR in general since not too many
people have done this before.

We have achieved most of our formative goals. In our final version, we were able to
come up with three sophisticated scenes and deploy them to Oculus along with
characters with different behaviors. We implemented a beach scene with a happy
character within it, a racing city scene with an angry character, and a forest scene with a
sad/depressed scene within it. These 3D scenes are successfuly deployable in both
Unity and Oculus. Unfortunately though, users are not able to move around freely in the
scenes, but this was not a priority for the purpose of our application and grand vision.
As far as characters go, we were able to create three characters with different behaviors
(happy and helpful, angry and inquisitive, sad and depressed). The recorded videos
show the distinct behavior of each character in the conversation. We realize that our
characters are not “truly” intelligent in a way that can replace a normal human being in a
conversation and that their behaviors highly depend on the flow of the conversation.
Ideally, with more time and resources, we would like to generate more stable and
intelligent characters but fine-tuning, or training our own language models for our
specific use-case.

In our grand vision, the characters were able to recognize the player's voice input
thanks to the VoiceSDK that comes with the Oculus and generate a reply and display it
on the screen with a reasonable amount of latency. While we were able to fully
implement the speech to text and NLP processing of our grand vision, we were unable
to incorporate a good text to speech converter compatible with Unity and Oculus for our
NPCs to use. This would be one of the last technical steps to achieve our grand vision
of the interactive and immersive learning environment.

Future Work

As mentioned above, one thing we haven’t achieved in the final presentation, but is
important for the immersive environment, is the text to speech translation for the agents’
responses. Currently, we are only able to display the response in text and output it on
the screen. However, this definitely disturbs the flow of the conversation and is neither
fully immersive nor interactive. ldeally, we want each character to be able to respond
with speech/sound in their own unique tones. We noted that this might have been
possible with a paid functionality like Google TTS (subject to compatibility issues) but no
good open source options were available. One aspect of our future work would be to
incorporate this text to speech in the response so we can create a fully interactive
environment.

We would also like to make the scenes/environments more interactive and interesting.
Right now we have sophisticated 3D scenes but the player is not able to move around
and interact with them. Ideally, the player should be able to move around freely within
the scene and explore the environment. We also want to put multiple characters/agents
in the same scene and try to generate organic/natural group conversations. This would
be a huge step towards truly immersive/interactive environments.

As far as agents/characters go, we were able to create 3 characters with 3 distinct
moods or personalities in our final version. However, we also found that the behaviors
are highly unpredictable and dependent on the flow of the conversation. In the future,
we would like to look into this and generate more meaningful conversations that are
compatible with the behavior settings of our characters. We also want to add
background stories to our characters. So instead of talking to an angry or a happy
character, we can talk to a World War Il veteran or a bartender who has met thousands
of people.

Our original goal of this project is to build interactive agents that people can converse
with to facilitate foregin language learning and practice. However, we discovered more
potential in the process of developing this application and building the stepping stones
to achieving this. We believe the idea of interactive and immersive conversations in VR
can allow for a variety of experiences and applications in VR, and is inevitably going to
be a very widespread technology in VR.

Contributions

Alex: For this project, | worked on exploring and integrating GPT-3 with the Oculus
Quest 2, and ensuring the Oculus VoiceSDK worked for our use case. This required
exploring and installing a variety of third party applications where OpenAl was
potentially compatible with Unity/VR, integrating these NLP libraries with the VoiceSDK
STT transcription feature, and ensuring it was deployable and worked on the Quest 2. |
evaluated the choices for the NLP and STT by its applicability to our MVP, final project,
and grand vision. Once the NLP and SST technology was chosen, | worked on
implementing the communication between the VoiceSDK transcription and the GPT-3 in
a Unity scene by ensuring the transcription text was passed to the GPT-3 backend, and
managing the client/server access tokens for both OpenAl and VoiceSDK. | also worked
on various Ul features such as displaying the transcribed text on a Unity canvas,
integrating the Quest 2 controller inputs for activating the voice input, and showing the
agent's response.

Avani: For this project, | came up with the grand vision idea, worked on exploring and
integrating OpenAl and ML agents toolkit with Unity, and ensured that text completion
works and is compatible for our use case. This required exploring, installing,
implementing and connecting several components of a variety of third party
packages/wrappers. | also explored DialogFlow, a continuation of Api.ai, (that also
included implementing a client and server interaction using ActiveMQ) and created a
fully functional text conversation with an agent that was shown in our MVP. |
implemented the behavior scripts and went through several trial and error procedures to
come to the right natural language input that enabled us to nudge the conversation with
the agent in a direction that would match the agent’s distinct ‘personality’ or ‘behavior’.
To demonstrate this, | created three distinct behaviors - angry and inquisitive, happy and
helpful, and sad and depressed (please look at the videos to see very believable
conversations!). To further enhance our project, | implemented three characters with a
menu/app that would allow us to toggle (left and right) between them and hence
converse with agents having different behaviors (this is an integral part to have realistic
agents for our grand vision). Overall, this involved state of the art technology
comparisons, overcoming several installation and implementation challenges, decision
making to resolve the said challenges and choose the appropriate technology, working
with behavior scripts, and creating an immersive experience.

Jiarui (Jack): For this project, | first explored the Oculus Quest 2 deployment from Unity
with a Mac since | own an Oculus. | also explored some core features of VoiceSDK
such as NLP for processing text into user intents and automatic speech recognition to
process voice requests. Alex’s experience on VoiceSDK, together with my exploration
results, determined our choice of VoiceSDK for our project in the MVP and final version.
| also explored some text to speech converters, such as Google TTS, for our NPCs to
reply, but unfortunately found no free compatible TTS. | helped Avani with creating the
menu scene by finding an online tutorial and ensuring that it worked for our project. In
order to give our users a more immersive experience, | implemented three 3D scenes
and placed a different character in each of the scenes. | worked with the Unity
SceneManager together with Avani’s character selection menu to create three scene
destinations for the users to explore. Finally, | worked with Alex to ensure the successful
and smooth deployment of our built project to Oculus from Mac.

